DNA Vaccine Development: Practical Regulatory Aspects

Dennis Klinman CBER/FDA

Plasmid DNA Vaccines

- DNA plasmids are designed so that a strong promoter drives the expression of one or more genes encoding the protein(s) of interest.
- The immunogenicity of DNA plasmids promised to revolutionize vaccine development:
 - Eliminated roadblocks to vaccine development:
 - Pathogen isolation, growth, purification and attenuation
 - Protein identification, production and purification
 - Tools of molecular biology used to isolate/clone relevant genes.
- Animal studies indicate that DNA vaccines can induce protective antibody and CTL responses in vivo.

Immune Responses Induced by DNA Vaccines

Considerations for Manufacturing Process Development

Vaccine Production and Quality Control

Principles common to all vaccine manufacture:

- Detailed manufacturing procedures: consistency of production
- Defined compatible components
- Product characterization: specifications
- Adventitious agent testing
- Examination for extraneous materials
- Stability, including genetic stability
- Recommendations for lot release testing

Lot Release Testing

- Sterility to detect bacterial or fungal contaminants
- General safety test performed in guinea pigs and mice to detect extraneous toxic contaminants
- Identity tests:
 - Plasmid size,
 - Restriction endonuclease digestion pattern
 - Percent of plasmid that is circular or supercoiled
- Purity freedom from protein, RNA, endotoxin and bacterial DNA contamination
- Potency in vivo or in vitro test to assess immunogenicity or transfection/translation efficiency
- Tests for removal of process contaminants

Safety Issues Associated with DNA Vaccines

- Induction of autoimmunity
 - Local inflammatory responses (myositis)
 - Organ-specific autoimmunity
- Persistence and integration of plasmid DNA
 - Sites of uptake and expression
 - Persistence of plasmid and protein product
 - Integration into the host genome
- General toxicity

Current CBER Perspective

- No systemic or organ-specific autoimmunity has been observed in DNA-vaccinated volunteers.
- CBER will no longer mandate that pre-clinical studies examine whether DNA vaccines induce autoimmune disease.
- If the formulation or content of a specific DNA vaccine raises concern that immunization may induce autoimmunity, specific pre-clinical and phase I clinical assessments will be requested on a case-by-case basis.

Concern: Integration of Plasmid DNA may cause Genetic Toxicity

- Vaccine-derived promoters/enhancers may alter the expression of host genes (including oncogenes).
- Genomic instability (breaks or rearrangements)
- Inactivation of tumor suppressors.
- Integration into reproductive tissue may result in germline alteration.

Persistence of DNA Vaccines in vivo

- Initial vaccine uptake is influenced by transfection efficiency and the method/dose of plasmid delivered.
 - Vaccine is primarily localized to the site of injection.
- The amount of plasmid decreases by several orders of magnitude over time.
- Typically, <30 copies of plasmid/million host cells persist long-term, corresponding to an integration rate 1,000-fold lower than the natural mutation rate.
- No long-term persistence has been reported for reproductive organs.

Current CBER Perspective

- Integration studies will be required only if the plasmid persists at high copy number (>300 copies/106 host genomes) in vivo.
- Biodistribution/persistence studies will be waived for DNA vaccines demonstrably similar to those already approved for clinical trial.
- Sponsors should contact the FDA for advice concerning:
 - New or significantly modified plasmids
 - When changes in formulation or method/route of delivery significantly alter plasmid uptake or distribution
 - If differences in the behavior of "approved" plasmids are observed.

Toxicity Evaluation

- Serum chemistries including liver and renal function tests (ALT, AST, creatine kinase, BUN)
- Hematologic analyses (CBC and differential)
- Clinical assessments (general health, injection site observation, limb use impairment)
- Necropsy (gross pathology and histopathology)
 - Acutely, 2-3 days after the final immunization
 - Chronically, 2-3 weeks after the final immunization.

General Safety of DNA Plasmids

Animals immunized twice/month for 5 months.

- No lasting change in immune milieu.
- No deaths
- No weight loss
- Normal serology and urinalysis
- No macroscopic or microscopic changes in:
 - spleen

• liver

intestine

lungs

lymph nodes

kidney

heart

adrenals

Proposed Revisions to CBER Guidelines

- Preclinical safety studies should be performed on every novel DNA vaccine or vaccine/adjuvant combination.
- Toxicity studies should use the highest dose of vaccine planned for clinical administration.
- Vaccine can be delivered on an accelerated schedule:
 - Vaccination intervals shorted to Q 3 4 weeks
 - Immunize with N + 1 doses of vaccine.
- CBER may modify the requirements for preclinical safety evaluation in select situations:
 - Where multiple variants of a specific gene are cloned into a common plasmid vector
 - When a complete safety evaluation has already been performed on a similar plasmid construct.

DNA Plasmids: Safety Profile in Man

- DNA plasmids have been introduced into many hundred normal volunteers.
- No serious adverse events have been reported.
- Local reactogenicity has been mild.
- Multiple immunizations are required to elicit even modest immune responses.
- Ongoing efforts are directed towards improving immunogenicity in Man.

Future Concerns

- Improvements in vaccine formulation/delivery may increase plasmid dissemination, cellular uptake, persistence, and the risk of integration or toxicity.
 - Intranasal, oral and i.v. routes may more efficiently disperse plasmid throughout the body.
 - Liposome encapsulation or electroporation may increase plasmid uptake and the range of cells being transfected
 - Changes in vector/gene may increase the risk of integration.
 - Changes in CpG content may alter toxicity
- Dose escalation increases all risks:
 - 20 ug ---> 7,500 ug per subject.
 - Multiple doses of multiple plasmids are being administered.
- Use of novel cytokine encoding plasmids.

Conclusion

As CBER accumulates experience with novel types of DNA vaccine, novel vaccine/adjuvant formulations, and novel vaccination strategies, our science-based review of these products will continue to evolve.